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Abstract We explicitly construct a stationary coupling attaining Ornstein’s d̄-distance be-
tween ordered pairs of binary chains of infinite order. Our main tool is a representation of
the transition probabilities of the coupled bivariate chain of infinite order as a countable
mixture of Markov transition probabilities of increasing order. Under suitable conditions
on the loss of memory of the chains, this representation implies that the coupled chain can
be represented as a concatenation of i.i.d. sequences of bivariate finite random strings of
symbols. The perfect simulation algorithm is based on the fact that we can identify the first
regeneration point to the left of the origin almost surely.

Keywords Ornstein’s d̄-distance · Chains of infinite order · Ordered binary chains ·
Regenerative scheme

1 Introduction

Let X = (Xn)n∈Z and Y = (Yn)n∈Z be two stationary chains of infinite order on the alphabet
A = {0,1}. The d̄-distance between X and Y is defined as

d(X,Y) = inf
{
P(X̃0 �= Ỹ0) : (X̃, Ỹ) stationary coupling of X and Y

}
. (1.1)

The d̄-distance was introduced by Ornstein in several papers and summarized in an in-
vited article in the first issue of The Annals of Probability [17].
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The existence of a stationary coupling attaining the d̄-minimum follows from following
basic topological considerations.

(i) The product space (A × A)Z is compact by Tychonov’s Theorem.
(ii) By Prohorov’s Theorem, any sequence of probability measures on (A × A)Z has a

convergent subsequence in the weak∗-topology.
(iii) Also, the set of all stationary couplings of X and Y is a closed subset of the set of all

probability measures on (A × A)Z.
(iv) Finally, the Boolean function 1{x0 �=y0} that defines the d̄-distance is continuous and

bounded.

From (i)–(iv) it follows that there exists at least a coupling which attains the d̄-distance. For
more details we refer the reader to Theorem 4.1 in [20].

Obviously this general reasoning does not enable us to explicitly construct a coupling
attaining the d̄-minimum. In spite the large literature which has been concentrated to this
area, as far as we know the problem of finding explicit solutions was addressed only for
finite alphabet Markov chains and for finite volume Gibbs measures. To give a further step
in this direction is exactly the goal and the novelty of this paper. We solve in a constructive
way the problem of finding a coupling attaining the d̄-distance between ordered pairs of
binary chains of infinite order. First, using basic stationarity arguments, we prove that the
d̄-distance is bounded below by |P(Y0 = 1) − P(X0 = 1)|. Next, we present an explicit con-
struction of a stationary coupling achieving the infimum (1.1) for stationary chains which are
stochastically ordered. This construction can be effectively implemented in an algorithmic
way to perfectly sample from this minimal d̄-coupling.

This article is organized as follows. In Sect. 2 we introduce the notation and basic defin-
itions. One coupling that attains the d̄-distance is presented in Sect. 3. The perfect sampling
algorithm is described in Sect. 4 and a pseudo-code implementing it is given by Algorithm 1.
The proofs of the theorems are presented in Sects. 5 and 6. We conclude the paper with a
final discussion and some bibliographic remarks (see Sect. 7).

2 Basic Definitions

In what follows all the processes and sequences of random variables are defined on the same
probability space (�, B,P).

Let X = (Xn)n∈Z and Y = (Yn)n∈Z be two stationary chains of infinite order (in the sense
of Harris [9]) on the alphabet A = {0,1}. Let pX and pY respectively be the transition
probabilities of these chains. This means that for any infinite sequence x−1

−∞ ∈ A−1
−∞ and any

symbol a ∈ A we have

P
(
X0 = a|X−1

−∞ = x−1
−∞

) = pX
(
a|x−1

−∞
)
,

P
(
Y0 = a|Y −1

−∞ = x−1
−∞

) = pY
(
a|x−1

−∞
)
.

In the above formula x−1
−∞ denotes the sequence (xi)i≤−1 and A−1

−∞ the set of all such se-
quences. These sequences will be called pasts. Given two integers m ≤ n we will also use
the notation xn

m to denote the sequence (xm, . . . , xn), and An
m to denote the set of such se-

quences.
In other terms pX and pY are regular versions of the conditional expectation of X0 and

Y0 with respect to the σ -algebra generated by X−1
−∞ and Y −1

−∞ respectively.
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Given two pasts x−1
−∞ and y−1

−∞, we will say that x−1
−∞ ≤ y−1

−∞, if xn ≤ yn for all n ≤ −1.
This defines a partial order on A−1

−∞.

Condition 1 (Ordering condition) We assume that the chains X and Y are stochastically
ordered in the following sense

pX
(
1|x−1

−∞
) ≤ pY

(
1|y−1

−∞
)
, whenever x−1

−∞ ≤ y−1
−∞. (2.1)

The stochastic order between pX and pY makes it possible to construct a stationary cou-
pling between X and Y in such a way that for all n ∈ Z, Xn ≤ Yn with probability 1. This
coupling is a stationary chain taking values in the set

S = {(0,0), (0,1), (1,1)}.

The transition probabilities P : S × S −1
−∞ → [0,1] of this chain are defined as follows: for

any pair of ordered pasts (x−1
−∞, y−1

−∞) ∈ S−1
−∞ we have

P
(
(1,1)|(x−1

−∞, y−1
−∞

)) = pX
(
1|x−1

−∞
)
,

P
(
(0,0)|(x−1

−∞, y−1
−∞

)) = pY
(
0|y−1

−∞
)
,

P
(
(0,1)|(x−1

−∞, y−1
−∞

)) = pX
(
0|x−1

−∞
) − pY

(
0|y−1

−∞
)
. (2.2)

We observe that for each pair of ordered pasts (x−1
−∞, y−1

−∞) ∈ S−1
−∞, P ((·, ·)|(x−1

−∞, y−1
−∞))

is the optimal coupling between pX(·|x−1
−∞) and pY (·|y−1

−∞).
We want to construct a chain of infinite order on S invariant with respect to P . This

can be done using a regenerative construction of the chain. This regenerative construction
is based on a decomposition theorem which states that the stationary chain with infinite
memory can be constructed by choosing at each step, in an i.i.d. way, the length of the suffix
of the string of past symbols we need to look in order to sample the next symbol.

The above mentioned results will follow under certain conditions on the transition prob-
abilities:

Condition 2 (Continuity condition) The transition probabilities pX and pY on A are contin-
uous, that is, the continuity rates satisfy

max
{
βX(k),βY (k)

} → 0 as k → ∞,

where the continuity rate βX(k) is defined as

βX(k) = max
a∈A

sup
{∣∣pX

(
a|x−1

−∞
) − pX

(
a|y−1

−∞
)∣∣, for all x−1

−∞, y−1
−∞ with x−1

−k = y−1
−k

}
, (2.3)

and similarly for βY (k).

To state our third condition we need some extra notation. For each pair (a, b) ∈ S and
each fixed ordered pair of pasts (x−1

−∞, y−1
−∞) ∈ S −1

−∞, we define a non-decreasing sequence
rk((a, b)|(x−1

−k , y
−1
−k )) such that

r0(a, b) = inf
{
P

(
(a, b) | (u−1

−∞, v−1
−∞

)) : (
u−1

−∞, v−1
−∞

) ∈ S −1
−∞

}
(2.4)
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and for k ≥ 1, rk((a, b)|(x−1
−k , y

−1
−k )) is defined by

inf
{
P

(
(a, b) | (u−1

−∞, v−1
−∞

)) : (u−1
−∞, v−1

−∞
) ∈ S −1

−∞, u−1
−k = x−1

−k , v
−1
−k = y−1

−k

}
. (2.5)

We then define the non-decreasing sequence (αk, k ∈ N)

α0 =
∑

(a,b)∈S

r0((a, b)) (2.6)

and for k ≥ 1

αk

((
x−1

−k , y
−1
−k

)) =
∑

(a,b)∈S

rk

(
(a, b)|(x−1

−k , y
−1
−k

))
, (2.7)

and

αk = inf
{
αk

((
x−1

−k , y
−1
−k

)) : (x−1
−k , y

−1
−k

) ∈ S −1
−k

}
. (2.8)

Condition 3
∏

k≥0

αk > 0. (2.9)

To better understand Conditions 2 and 3 we will look at an interesting class of examples
which are the renewal processes that forget the past every time they meet the symbol 1. Take
pX(1|x−1

−∞) = qX

�(x−1−∞)
and pY (1|y−1

−∞) = qY

�(y−1−∞)
where �(u−1

−∞) = inf{n ≥ 1 : u−n = 1}. We

will consider the case when the expectation of the distance between two successive renewal
points in the X process and the Y process are finite. That is,

∞∑

k=0

k∏

j=0

(
1 − qX

j

)
< ∞ and

∞∑

k=0

k∏

j=0

(
1 − qY

j

)
< ∞.

The divergent case corresponds to the degenerated case in which the only stationary process
with these transition probabilities is the zero sequence. Notice that

∑∞
k=0

∏k

j=0(1−qj ) = ∞
is weaker than

∑∞
k=0 qk < ∞.

Example 1 If limk→∞ qX
k ↘ qX∞ > 0 and limk→∞ qY

k ↘ qY∞ > 0 exist, then Condition 2 is
satisfied. On the other hand, if we take qX

0 = qX
2k �= qX

2k+1 = qX
1 with 0 < qX

0 < qX
1 < 1,

Condition 2 is not satisfied.

Example 2 If limk→∞ qX
k ↘ qX∞ > 0 and limk→∞ qY

k ↘ qY∞ > 0, Condition 3 is equivalent
to

∏

n

(
1 − qX

n + qX
∞

)(
1 − qY

n + qY
∞

)
> 0.

For instance, it is enough to have
∑

n(q
X
n − qX∞) = +∞ or

∑
n(q

Y
n − qY∞) = +∞ to break

Condition 3.
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3 Construction of Our Coupling

The goal of this section is to present a coupling between the chains X and Y that attains the
d̄-distance given by |P(Y0 = 1)− P(X0 = 1)|. To obtain such a coupling Conditions 1–3 are
required. Therefore, we assume from now on that they are satisfied.

To start the construction we first decompose the transition probability P given by (2.2)
as a convex combination of increasing order finite Markov kernels Pk on S × S −1

−k for k ≥ 1.
Let us define a probability distribution (λk, k ∈ N) as follows.

λ0 = α0 (3.1)

and for k ≥ 1

λk = αk − αk−1. (3.2)

The fact that (λk, k ∈ N) is a probability distribution follows from the fact that αk → 1 as
k diverges. Obviously this follows from Condition 2.

Theorem 3.3 There exists a sequence of transition probabilities Pk on S × S −1
−k for k ≥ 1

and a probability measure P0 on S such that for any pair of symbols (a, b) in S and any
ordered pair of pasts (x−1

−∞, y−1
−∞) ∈ S −1

−∞ we have

P
(
(a, b)|(x−1

−∞, y−1
−∞

)) = λ0P0 ((a, b)) +
∞∑

k=1

λkPk

(
(a, b) | (x−1

−k , y
−1
−k

))
. (3.4)

This decomposition allows us to construct simultaneously the pair of chains (Xn,Yn)n∈Z

taking values in S by concatenating bivariate i.i.d. strings. This is done as follows.
Let now L = {Ln,n ∈ Z} be an i.i.d. sequence of random variables such that P(Ln =

k) = λk where (λk, k ∈ N) is given by (3.1) and (3.2). Define also

T0 = sup{z ≤ 0;Lz+m ≤ m, for all m ≥ 0}
and for n ≥ 1

T−n = sup{z < T−n+1;Lz+m ≤ m, for all m ≥ 0}
and

Tn = inf{z > Tn−1;Lz+m ≤ m, for all m ≥ 0}.
Given the random variables L = {Ln,n ∈ Z} and T = {Tj , j ∈ Z}, we construct the bi-

variate chain (Xn,Yn)n∈Z by concatenating the bivariate strings (X
Tj+1−1
Tj

, Y
Tj+1−1
Tj

). Each
one of these strings is constructed as follows.

1. Choose (XTj
, YTj

) ∈ S with probability P0 independently of the past.
2. For any Tj < n ≤ Tj+1 − 1 choose (Xn,Yn) ∈ S with probability

PLn

(
(·, ·)|(Xn−1

n−Ln
= xn−1

n−Ln
, Y n−1

n−Ln
= yn−1

n−Ln

))
.

Observe that if Tj ≤ n < Tj+1 then n − Ln ≥ Tj and therefore the choice of the pair

(Xn,Yn) is made independently of the choice of the symbols (X
Tj −1
−∞ , Y

Tj −1
−∞ ). In this con-

struction, the transition probabilities Pk are those appearing in Expression (3.4).
The existence of infinitely many finite renewal points Tn is given in the next theorem.
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Theorem 3.5 The sequence of random times T = (Tn, n ∈ Z) with . . . , T−1 < T0 ≤ 0 < T1 <

T2 < · · · satisfies

(i) P-almost surely, all the random times . . . T−1 < T0 ≤ 0 < T1 < T2 < · · · are finite.
(ii) The random pairs of strings (X

Ti+1−1
Ti

, Y
Ti+1−1
Ti

), i �= 0 are mutually independent and

identically distributed. The pair of strings (X
T1−1
T0

, Y
T1−1
T0

) is independent from the oth-
ers.

We can now present a stationary coupling attaining the d̄-distance. This coupling is ob-
tained concatenating the independent strings (X

Ti+1−1
Ti

, Y
Ti+1−1
Ti

), i ∈ Z. For this coupling we
have the following theorem.

Theorem 3.6 The coupling obtained by concatenating the independent strings
(X

Ti+1−1
Ti

, Y
Ti+1−1
Ti

), i ∈ Z attains the d̄-distance between X and Y.

4 Perfect Simulation Algorithm

Given two fixed times m ≤ n, we want to perfectly sample (Xn
m,Y n

m) according to our mini-
mal d̄-coupling between the chains X and Y described in Sect. 3.

There is an obvious difficulty: we cannot identify a regeneration point experimentally.
This follows from the fact that, for any j ∈ Z the event “j is a regeneration point” is mea-
surable with respect to the σ -algebra generated by the random variables Lj+k, k ≥ 0.

This difficult will be overcome by Algorithm 1 whose pseudo-code is given below. Algo-
rithm 1 will produce a sequence (X̃n

m, Ỹ n
m) as follows. We sequentially choose i.i.d. random

variables Ls, s = n,n − 1, . . . , with distribution P(Ls = k) = λk given by (3.1) and (3.2).
The algorithm checks every time t ≤ m, until it finds the first one which has the property
that

Ls ≤ s − t, for all s = t, . . . , n.

Call T [m,n] the first t ≤ m which has this property:

T [m,n] = sup{t ≤ m;Ls ≤ s − t, for all s = t, . . . , n}.
The random time T [m,n] indicates how far back into the past we have to look in order to
construct (X̃n

m, Ỹ n
m).

In other terms, if T [m,n] = t then we can choose (X̃t , Ỹt ) independently of the past
with distribution P0. Moreover, the next pair (X̃t+1, Ỹt+1) can be chosen using distribution
either P0 or P1(·|(X̃t , Ỹt )) and recursively we can choose all the sequence (X̃n

t , Ỹ
n
t ) without

knowledge of the symbols occurring before time T [m,n]. The kernels P0 and Pk are defined
as in Theorem 3.3.

The sequence (X̃n
m, Ỹ n

m) produced by Algorithm 1 in a finite number of steps depends
on the particular choice of the random variables Lj , j = T [m,n], . . . , n. Let us call this
choice l̃j , j = T [m,n], . . . , n. On the other hand, the sequence (Xn

m,Y n
m) produced by the

theoretical construction presented in Sect. 3 depends on the choice of Lj , j ∈ Z. Let us call
lj , j ∈ Z this choice. The important point to stress is that if l̃j = lj , j = T [m,n], . . . , n then
(X̃n

m, Ỹ n
m) = (Xn

m,Y n
m). This is the content of the following theorem.

Theorem 4.1 Under Conditions 1–3, for the decomposition given by (3.4), for every pair of
integers m ≤ n, we have:
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Algorithm 1 Perfect simulation for a minimal d̄-coupling

Require: Two integers m ≤ n.
Ensure: The bivariate string (X̃n

m, Ỹ n
m) and the past time T [m,n].

1: B ← ∅ {B is the set of time positions s for which the pair (X̃s, Ỹs) has already been
chosen}

2: t ← m

3: s ← t

4: while s ≤ n do
5: if s /∈ B then
6: choose Ls with distribution P(Ls = k) = λk independently of everything
7: if Ls > s − t then
8: t ← t − 1
9: s ← t

10: end if
11: else
12: choose (X̃s, Ỹs) with distribution PLs ((·, ·)|(X̃s−1

s−Ls
, Ỹ s−1

s−Ls
))

13: B ← B ∪ {s}
14: s ← s + 1
15: end if
16: end while
17: T [m,n] ← t

18: return (X̃n
m, Ỹ n

m), T [m,n]

(a) T [m,n] is a.s. finite.
(b) The event {T [m,n] = t} is measurable with respect to the σ -algebra generated by the

random variables Ls, t ≤ s ≤ n.
(c) Algorithm 1 stops almost surely after a finite number of steps.
(d) The sequence (X̃n

m, Ỹ n
m) produced by Algorithm 1 is a perfect sample of the minimal

d̄-coupling between the chains X and Y described in Sect. 3.

5 Proofs of Theorems 3.3 and 3.5

Proof of Theorem 3.3 Before starting the proof let us sketch its main ideas. Given an or-
dered pair of “past” strings (x−1

−∞, y−1
−∞), we want to randomly choose a new random pair

of symbols (a, b) ∈ S according to P (·|(x−1
−∞, y−1

−∞)). This random choice can be performed
as follows. First make a partition {I ((a, b)|(x−1

−∞, y−1
−∞)), (a, b) ∈ S} of the interval [0,1]

where the length of I ((a, b)|(x−1
−∞, y−1

−∞)) is equal to P ((a, b)|(x−1
−∞, y−1

−∞)). Then, choose a
random element ξ uniformly distributed in [0,1]. If ξ ∈ I ((a, b)|(x−1

−∞, y−1
−∞)), then choose

(a, b) as the new pair of symbols. It turns out that I ((a, b)|(x−1
−∞, y−1

−∞)) can be decomposed
as the following disjoint union

I
(
(a, b)|(x−1

−∞, y−1
−∞

)) = I0((a, b)) ∪
⋃

k≥1

Ik

(
(a, b)|(x−1

−k , y
−1
−k

))
, (5.1)
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where the length of I0((a, b)) and Ik((a, b)|(x−1
−k , y

−1
−k )) are suitably chosen. Loosely speak-

ing, the length of the interval Ik((a, b)|(x−1
−k , y

−1
−k )) is the smallest probability to choose

(a, b) for any pair of ordered pasts having (x−1
−k , y

−1
−k ) as ending sequence.

We can consider a second different partition of [0,1] by using the increasing sequence
0 < α0 ≤ α1 ≤ · · ·. The length of the kth element of this partition is precisely λk . Loosely
speaking, if ξ falls on this interval, then we only need to look at the last k symbols of the
past.

Formally this is done as follows. Let us define a partition of the interval [0,1] formed by
the disjoint intervals

I0((0,0)), I0((0,1)), I0((1,1)),

and for k ≥ 1,

Ik

(
(0,0)|(x−1

−k , y
−1
−k

))
, Ik

(
(0,1)|(x−1

−k , y
−1
−k

))
, Ik

(
(1,1)|(x−1

−k , y
−1
−k

))
, . . .

disposed in the above order in such a way that the left extreme of one interval coincides with
the right extreme of the precedent. These intervals have length

|I0((a, b))| = r0((a, b)) (5.2)

and for k ≥ 1,

∣∣Ik

(
(a, b) | (x−1

−k , y
−1
−k

))∣∣ = rk

(
(a, b)|(x−1

−k , y
−1
−k

)) − rk−1

(
(a, b)|(x−1

−(k−1), y
−1
−(k−1)

))
. (5.3)

Notice that the continuity of transition probabilities pX and pY implies that

rk

(
(a, b)|(x−1

−k , y
−1
−k

)) → P
(
(a, b)|(x−1

−∞, y−1
−∞

))
(5.4)

as k diverges.
By construction,

P
(
(a, b)|(x−1

−∞, y−1
−∞

)) = |I0((a, b))| +
∑

k≥1

∣∣Ik

(
(a, b)|(x−1

−k , y
−1
−k

))∣∣. (5.5)

Therefore, we can simulate P ((a, b)|(x−1
−∞, y−1

−∞)) by using an auxiliary random variable
ξ uniformly distributed on [0,1] as

P
(
(a, b)|(x−1

−∞, y−1
−∞

)) = P

(
ξ ∈ I0((a, b)) ∪

⋃

k≥1

Ik

(
(a, b)|(x−1

−k , y
−1
−k

)))
. (5.6)

Observe that the right hand side of this equality can be rewritten as

∑

k≥0

P (ξ ∈ [αk−1, αk))P

(
ξ ∈ I0((a, b)) ∪

⋃

j≥1

Ij

(
(a, b)|(x−1

−j , y
−1
−j

)) | ξ ∈ [αk−1, αk)

)
(5.7)

where α−1 = 0.
By construction,

[0, αk) ∩
⋃

j>k

Ij

(
(a, b)|(x−1

−j , y
−1
−j

)) = ∅.
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In other terms, for each k, the conditional probabilities on the right hand side of (5.7)

depend on the suffix (x−1
−k , y

−1
−k ) and not on the remaining terms (x

−(k+1)
−∞ , y

−(k+1)
−∞ ). Moreover,

∑

(a,b)∈S

P

(
ξ ∈ I0((a, b)) ∪

⋃

j≥1

Ij

(
(a, b)|(x−1

−j , y
−1
−j

)) | ξ ∈ [αk−1, αk)

)
= 1.

Therefore, we are entitled to define the order k Markov probability transitions Pk as

Pk

(
(a, b)|(x−1

−k , y
−1
−k

)) = P

(
ξ ∈ I0((a, b)) ∪

⋃

j≥1

Ij

(
(a, b)|(x−1

−j , y
−1
−j

)) | ξ ∈ [αk−1, αk)

)
.

(5.8)
Finally we define the probability distribution (λk, k ∈ N) as follows.

λ0 = P(ξ ∈ [0, α0)) = α0 (5.9)

and for k ≥ 1

λk = P(ξ ∈ [αk−1, αk)) = αk − αk−1. (5.10)

This concludes the proof. �

Proof of Theorem 3.5 Define the event Bn as “n is a regeneration point”. Formally,

Bn =
⋂

m≥0

{Ln+m ≤ m}. (5.11)

Observe that
(⋂

N≥1

⋃

n≥N

Bn

)
∩

(⋂

N≤0

⋃

n≤N

Bn

)
=

⋂

k≥1

{Tk < +∞} ∩
⋂

k≤0

{Tk > −∞} . (5.12)

Therefore, the existence of infinitely many regeneration times Tn will follow from the fol-
lowing lemma.

Lemma 5.13 Assume that α = ∏+∞
j=0 αj > 0. Then, for any N ∈ Z,

P

( ∞⋃

n=N

Bn

)

= 1.

Proof For any n ∈ Z define

F 0
n = {Ln > 0}

and m ≥ 1

Fm
n =

m−1⋂

j=0

{Ln+j ≤ j} ∩ {Ln+m > m}.

Define

DN
1 = BN,
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and for k ≥ 2

DN
k =

+∞⋃

n1=N+1

· · ·
+∞⋃

nk−1=nk−2+1

(
F

n1−N−1
N ∩ · · · ∩ F

nk−1−nk−2−1
nk−2 ∩ Bnk−1

)
.

How to interpret Fm
N ? Assume LN = 0 and therefore, we can choose (XN,YN) indepen-

dently of the past symbols (XN−1
−∞ , Y N−1

−∞ ). From this point on, we look at the values of LN+j

and we can choose (XN+j , YN+j ) using only the knowledge of (X
N+j−1
N ,Y

N+j−1
N ). This se-

quence breaks down at j = m, since LN+m > m and therefore, the choice of (XN+m,YN+m)

depends on the knowledge of symbols occurring before time N .
Therefore, DN

k is the event in which the trials, described above, starting from time N

fail exactly k − 1 times before finally we find the starting point of a string which is entirely
independent of the past symbols. Therefore, the events DN

k , k = 1,2, . . . are disjoint and

+∞⋃

n=N

Bn =
+∞⋃

k=1

DN
k .

Therefore

P

(+∞⋃

n=N

Bn

)

=
+∞∑

k=1

P
(
DN

k

)
.

Since the random lengths {Ln,n ∈ Z} are identically distributed, the probabilities com-
puted above do not depend on the specific choice of N . By definition

P
(
DN

k

) =
+∞∑

n1=N+1

· · ·
+∞∑

nk−1=nk−2+1

P
(
F

n1−N−1
N ∩ · · · ∩ F

nk−1−nk−2−1
nk−2 ∩ Bnk−1

)
.

Using the independence of F
n1−N−1
N , . . . ,F

nk−nk−1−1
nk−1 and Bnk

whenever N < n1 < · · · < nk

we can rewrite the right hand side of the last expression as

P
(
DN

k

) =
+∞∑

n1=N+1

· · ·
+∞∑

nk=nk−1+1

P
(
F

n1−N−1
N

) · · ·P(
F

nk−nk−1−1
nk−1

)
P(Bnk

).

Since Ln,n ∈ Z are i.i.d. random variables with P(L0 ≤ m) = αm, for any n, we have

P(Bn) = P

(⋂

m≥0

{Ln+m ≤ m}
)

=
∏

m≥0

αm = α

and
+∞∑

l=n+1

P
(
F l−n−1

n

) = 1 − α.

Therefore, for any k ≥ 1 we have

P
(
DN

k

) = α(1 − α)k−1
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and

P

(+∞⋃

n=N

Bn

)

=
+∞∑

k=1

α(1 − α)k−1 = 1.

This concludes the proof of the lemma. �

Lemma 5.13 and the stationarity of the events Bn imply that

P

(
0⋂

n=−∞
Bc

n

)

= 0.

Observe that for each n, if Bn occurs, then (X∞
n , Y ∞

n ) can be chosen independently from
the past symbols (Xn−1

−∞, Y n−1
−∞ ). This concludes the proof of Theorem 3.5. �

6 Proof of Theorems 3.6 and 4.1

We begin with a lemma giving a lower bound for the d̄-distance between stationary binary
chains. For this lemma we are not assuming that the chains are ordered.

Lemma 6.1 Let X = (Xn)n∈Z and Y = (Yn)n∈Z be any two stationary chains on {0,1}. Then

d̄(X,Y) ≥ |P(Y0 = 1) − P(X0 = 1)|.

Proof The set of all stationary chains (X′
n, Y

′
n)n∈Z taking values on {0,1}2 such that P(X′

n =
1) = P(Xn = 1) and P(Y ′

n = 1) = P(Yn = 1) contains the set of all stationary couplings
between (Xn)n and (Yn)n. Therefore,

inf
{
P(X̃0 �= Ỹ0) : (X̃, Ỹ) stationary coupling of X and Y

}

is greater than

inf
{
P(X0 �= Y 0) for all (X0, Y 0) such that X0

D= X0 and Y 0
D= Y0

}
.

It is a straightforward computation to check that this last term reaches its minimum with the
following optimal coupling between X0 and Y0. For any a ∈ {0,1}, take

P((X′
0, Y

′
0) = (a, a)) = min{P(X0 = a),P(Y0 = a)},

P((X′
0, Y

′
0) = (a,1 − a)) = P(X0 = a) − P((X′

0, Y
′
0) = (a, a)).

�

Now we show that for ordered binary stationary chains |P(Y0 = 1) − P(X0 = 1)| is also
an upper bound for d̄(X,Y).

Consider the coupling obtained by concatenating the independent strings as described
in Sect. 3. Theorems 3.3 and 3.5 imply that the process (Xn,Yn)n∈Z taking values in S is
stationary. As a consequence
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• the chains (Xn)n∈Z and (Yn)n∈Z constructed simultaneously by the algorithm are also
stationary,

• (X0, Y0) is a coupling of the probabilities P(X0 = ·) and P(Y0 = ·),
• moreover by construction X0 ≤ Y0.

There exists a unique optimal coupling between P(X0 = ·) and P(Y0 = ·), satisfying the
order condition X0 ≤ Y0 :

P{(X0, Y0) = (0,0)} = P(Y0 = 0),

P{(X0, Y0) = (1,1)} = P(X0 = 1),

P{(X0, Y0) = (0,1)} = P(X0 = 0) − P(Y0 = 0).

With this coupling we have

P{X0 �= Y0} = P(Y0 = 1) − P(X0 = 1). (6.2)

Equality (6.2) together with Lemma 6.1 concludes the proof of Theorem 3.6. �

To prove Theorem 4.1 let us assume without loss of generality that m = 0.
Assertion (a) follows from the fact that for any n ≥ 0, T [0, n] ≥ T0 and by Theorem 3.5,

T0 is finite almost surely.
The proof of (b) follows from the definition of T [0, n].
We want to prove that the number of steps Algorithm 1 makes before stopping is finite.

Observe that for each t between T [0, n] and 0, the algorithm must do at most C(|t | + n)

steps

• to check if Ls ≤ s − t for any t ≤ s ≤ n

• and to assign a value to Xs if this is possible.

In the expression C(|t | + n), C is a fixed positive constant which bounds above the number
of operations we need to perform at each single step.

Therefore the total number of steps Algorithm 1 must do before it stops is bounded above
by

C.

−T [0,n]∑

k=0

(k + n) = C

[
(−T [0, n] + 1).n + −T [0, n](−T [0, n] + 1)

2

]
.

This concludes the proof of (c).
Finally, to prove (d) let us suppose that for t ≤ 0 we have

Lt = 0, Lt+1 ≤ 1, . . . ,Ln ≤ n − t. (6.3)

Then, the choice of (Xn
t , Y

n
t ), according to the theoretical construction of Sect. 3, is

independent of Ls, s < t .
By definition, T [0, n] = sup{t ≤ 0;Lt = 0, Lt+1 ≤ 1, . . . ,Ln ≤ n − t}. By (a) T [0, n] is

almost surely finite. By construction, if T [0, n] = t then

(
X̃n

t , Ỹ
n
t

) = (
Xn

t , Y
n
t

)
.

�



Perfect Simulation of a Coupling Achieving the d̄-distance Between 681

7 Final Comments and Reference Remarks

The main contribution of this article is to present an explicit construction of a stationary
coupling between ordered binary chains of infinite order achieving the minimal d̄-distance.
Moreover, we show that this explicit construction is feasible, in the sense that it can be
realized by a perfect simulation algorithm which stops almost surely after a finite number of
steps.

Theorem 3.6 can be seen as a generalization to the infinite volume setting of results of
Kirillov et al. [13] who show that the classical coupling introduced by Holley [10] attains
d̄-distance for finite volume Gibbs states. Besides [13] the only other constructive results
on this field are [3–6] which consider the case of Markov chains on a finite alphabet. Ours
seems to be the first constructive solution for chains of infinite order. Several challenges
lay ahead. For instance the problem of finding a constructive solution for non-binary chains
and/or non-ordered pairs of chains as well as infinite volume Gibbs measures.

Our results can be presented as a constructive solution for the Monge-Kantorovich prob-
lem with additive cost function on C : AZ × AZ → [0,1] defined as follows. For any pair of
sequences x+∞

−∞ and y+∞
−∞

C
(
x+∞

−∞ , y+∞
−∞

) =
∑

n∈Z

cn|xn − yn|,

where (cn)n∈Z is a sequence of positive real numbers, with
∑

n∈Z
cn = 1. This follows

straightforward from the following observation.

dMK(X,Y) = inf

{∑

n∈Z

cnP(X̃n �= Ỹn) : (X̃, Ỹ) stationary coupling of X and Y
}

= inf

{
P(X̃0 �= Ỹ0)

∑

n∈Z

cn : (X̃, Ỹ) stationary coupling of X and Y
}

= inf
{
P(X̃0 �= Ỹ0) : (X̃, Ỹ) stationary coupling of X and Y

}

= d(X,Y).

The Monge-Kantorovich problem has attracted lots of attention recently. However, to the
best of our knowledge, ours are the first results in this direction. The literature on MKP
is very extensive. We let the interested reader to find his way starting with the classical
reference [19] up to the last [20].

Chains of infinite order seem to have been first studied by Onicescu and Mihoc [18] who
called them chains with complete connections (chaînes à liaisons complètes). The name
chains of infinite order was coined by Harris [9]. We refer the reader to [11] for a presenta-
tion of the classical material. We refer the reader to [7] for a self contained presentation of
chains of infinite order including the representation of chains of infinite order as a countable
mixture of finite order Markov chains.

Our Theorem 3.5 is an application to pairs of chains of the results in [2]. However, our
proof of the result is new and we believe it is simpler than theirs. The representation of
chains of infinite order as a countable mixture of Markov chains of increasing order appears
explicitly in [12] and implicitly in [8] and [2]. Regeneration schemes for chains of infinite
order have been obtained by Berbee [1] and by Lalley [14, 15].
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In the literature, the stochastically order between stochastic chains we considered here
is also called domination. We refer the reader to the book of Lindvall [16] for more on the
subject.

To assure that Algorithm 1 stops after a finite number of steps we need weaker conditions
than our Conditions 1 and 3. This follows from the fact that our Algorithm 1 is inspired by
the one proposed in [2] in a different context. For details, we refer the reader to the original
article. However, our goal was to sample from a minimal d̄-coupling. It is an open issue if
this can be done under weaker conditions.
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